Abstract:
|
O carbono constitui-se em um importante atributo na capacidade produtiva do solo. Porém, as tradicionais metodologias empregadas para sua determinação geram problemas ambientais devido ao uso de reagentes químicos. A espectroscopia é uma das técnicas promissoras na Agricultura de Precisão para análises de solos e que pode trazer uma solução viável para análise de teor de carbono. Dentre suas vantagens, destaca-se a preservação da amostra, o não consumo de reagentes, além de sua eficiência na aquisição de dados provenientes de um grande número de amostras. O objetivo deste trabalho foi contribuir com um modelo de regressão capaz de predizer a quantidade de carbono em amostras de solo utilizando a espectroscopia na região do visível e no infravermelho próximo. Para tanto, foi utilizada a técnica de Aprendizagem de Máquina SVM incorporada ao software WEKA como auxílio na criação do modelo. A SVM tem representado uma alternativa melhor aos já consagrados métodos de regressão multivariada por apresentar capacidade de generalização. Nos experimentos realizados foi utilizado um conjunto de amostras de solo coletadas na região dos Campos Gerais. A avaliação dos resultados teve como base os erros de previsão e os coeficientes de correlação entre os valores dos teores de carbono preditos pelo modelo. Foram encontrados coeficientes de correlação 0,89. Concluiu-se que a espectroscopia no vis-NIRS aliada à técnica SVM pode ser recomendada como uma alternativa aos métodos convencionais de análise de carbono em solos. |